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Time-resolved biophysical methods in the study of protein 
folding 
Kevin W Plaxco* and Christopher M Dobsont 

Many of the biophysical techniques developed to characterize 
native proteins at equilibrium have now been adapted to the 
structural and thermodynamic characterization of transient 
intermediate populations during protein folding. Recent 
advances in these techniques, the use of novel methods 
of initiating refolding, and a convergence of theoretical 
and experimental approaches are leading to a detailed 
understanding of many aspects of the folding process. 
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Abbreviations 
ANS 8-anilino-1 -naphthalenesulphonate 
Cl2 chymotrypsin inhibitor 2 
MS mass spectrometry 
NOE nuclear Overhauser effect 
SAXS small-angle X-ray scattering 
T-jump temperature jump 

I n t r o d u c t i o n  
The primary question addressed in studies of protein 
folding can be stated very simply: how do denatured 
polypeptide chains limit their conformational search in 
order to achieve the native state in a biologically relevant 
time? The  complexity of the denatured state rules out the 
possibility that folding is a simple stochastic search process 
[1], and folding is, almost certainly, facilitated by the 
existence of (potentially multiple) specific mechanisms. 
Much effort has gone into the characterization of transient 
partially folded states arising during folding [2,3 ° ] in an 
attempt to understand these mechanisms and the process 
by which proteins rapidly fold to their native structures. 

Native proteins are characterized by a high degree 
of compactness, an ordered hydrophobic core, a well 
defined overall architecture, and the presence of specific 
and cooperative interactions among buried side chains. 
Recent progress in both instrumentation and experimental 
design has provided unprecedented insights into the 
evolution of each of these characteristics as an initially 
disordered and extended polypeptide chain folds via a 
heterogeneous population of partially folded states into 
its native conformation (Fig. 1). In this article we focus 
on recent advances in the time-resolved experimental 
characterization of the properties and distribution of 

partially folded states arising during nonoxidative refolding 
in vitro, and the promise that these developments hold for 
providing a detailed description of the folding process. 

The initiation of folding 
Protein folding in the cell follows synthesis of the 
polypeptide chain on a ribosome. Refolding in vitro is 
more readily initiated by rapidly transferring a protein from 
denaturing conditions to an environment in which the 
native conformation is favoured. This is often achieved 
by diluting protein solutions containing denaturant with 
nondenaturing buffers using a stopped-flow mixing device. 
Turbulent mixers, such as the Berger ball mixer used in 
many commercially available instruments, achieve high 
mixing efficiency by interweaving fine, turbulence-gen- 
erated streams [4]. The  minimum dimensions of these 
streams is limited by technical issues, such as cavitation, 
such that denaturants require >100Its to diffuse from 
them. Limits on the physical proximity of a detecting 
cell to the mixer, and the speed with which flow can be 
stopped without producing shock effects, further increase 
the deadtime of most stopped-flow instruments to > 1 ms. 

The  extremely rapid burst-phase events now evident 
for many proteins are complete within the deadtime of 
conventional stopped-flow mixing devices [5]. Fortunately, 
recent technical advances promise significant reductions 
in these mixing deadtimes. The  use of continuous-flow 
devices that avoid the shock disturbances of high-speed 
stopped-flow and 'freejet '  mixers, which generate small, 
rapidly diffusing streams by laminar flow through very 
small orifices, has lowered deadtimes to tens of microsec- 
onds [6°]. Non-mixing methods, such as flash photolysis 
[7], optical electron transfer [8 °] and temperature jump 
(T-jump) [9 °, 10°], promise further improvements. Optical 
electron transfer, based on the existence of conditions 
under which an oxidized redox protein is unfolded but 
the reduced form is native, has been used to initiate 
the refolding of cytochrome c in < 1 Its by photochemi- 
cally induced reduction [8°]. T-jump experiments, based 
on reversing cold-induced denaturation through rapid 
sample heating, have yielded deadtimes o f - 1 0 g s  by 
electrical-discharge heating [9 °] and an amazing - 2 0 n s  
by laser-induced heating [10"]. Applied to the folding of 
apomyoglobin, laser T-jump has been used to characterize 
a collapsed state formed in a diffusion-limited reaction 
that is completed within - 2 0  Its [10"]. When coupled with 
high-speed absorbance, fluorescence and CD, these new 
folding-initiation techniques will undoubtedly provide 
important insights into the chemistry of the earliest events 
in folding. 
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Figure 1 

A schematic representation of the 
characteristics of globular proteins 
that can be followed during refolding, 
with time resolution in the second to 
millisecond range. Other properties that 
can be monitored, but are not indicated, 
include the creation and disruption of 
organized hydrophobic voids and overall 
thermodynamic stability. Although no 
individual probe can monitor all of the 
structural details of a folding intermediate, 
the use of multiple complementary probes 
can provide a detailed picture of the 
distribution of conformations that make 
up transient folding populations. 
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Measuring collapse and core packing 
A general property of protein folding is that an extended 
and highly disordered polymer chain must collapse to 
form a compact, globular protein [11°]. Measures of 
molecular dimensions and core packing (Table 1) are 
thus critical elements of a complete description of the 
folding process. Indirect probes of these properties, such 
as changes in the UV absorbance of aromatic residues 
[12°], the fluorescence of tryptophan or tyrosine side 
chains [13°°], or the fluorescence of extrinsic fluorophores 
such as 8-anilino-l-naphthalenesulphonate (ANS) [14°], 
have seen widespread application. More direct probes 
of the exclusion of solvent from the hydrophobic core, 
involving monitoring the accessibility of hydrophilic 
fluorescence quenchers such as iodide or acrylamide 
[13 °°] or the reactivity of cysteine side chains [15], 
have also been developed. The use of time-resolved 
fluorescence spectroscopy, not only to monitor molecular 
dimensions but also to provide a detailed description of 
the loss of core residue mobility during the refolding 
of dihydrofolate reductase [16°], is a recent example of 
the variety of indirect indicators of the collapse and core 
packing that are available. What most of these probes 
lack, however, is an ability to monitor the distribution 
of individual species in heterogeneous mixtures or to 
provide a quantitative measure of the dimensions of 
partially folded conformations. Although little progress has 

been made on the former, several quantitative probes of 
molecular dimension are now available. 

Time-resolved fluorescence energy transfer, small-angle 
X-ray scattering (SAXS), and quasi-elastic light scattering 
have all been used to provide a direct measurement of 
the dimensions of species arising during folding. The 
detection of fluorescence energy transfer between a cova- 
lently attached fluorophore and a tryptophan side chain, 
which has been used to attempt direct measurements of 
the evolution of collapsed species during the refolding of 
apomyoglobin [17 °] and other proteins [18], is consistent 
with the hypothesis that these proteins fold via a rapidly 
formed intermediate of near-native compactness. Such 
studies are, however, limited to proteins that can be 
modified with suitable fluorophores and only provide 
measurements of a single scalar distance. Unlike fluores- 
cence energy transfer, SAXS [19] and quasi-elastic light 
scattering provide direct means of monitoring the overall 
dimensions of macromolecules. SAXS, when implemented 
with very high flux synchrotron X-ray sources, provides a 
measure of the average radius of gyration with < 100 ms 
time resolution. This technique has recently been applied 
to the refolding of apomyoglobin, again indicating the 
near-native compactness of the major folding intermediate 
of this protein [20°,21]. Quasi-elastic light scattering, 
though presently limited by a - 1  s deadtime, monitors 
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Table 1 

Biophysical techniques used to investigate protein folding*. 

Property Technique Resolution Measurement Reference 

Core packing Intrinsic fluorescence < 1 ms The orientation and environment of [13"]  
(predominantly) tryptophan side chains 

Ultraviolet absorbance ms The orientation and environment of [12 °] 
(predominantly) tyrosine side chains 

Extrinsic (ANS) fluorescence ms Formation and disruption of organized [14 °] 
hydrophobic patches and clefts 

Fluorescence quenching ms Isolation of tryptophan side chains from [13"]  
hydrophilic fluorescence quenchers 

Cysteinyl quenching 10 s Protection of cysteine side chains from [15] 
hydrophilic reactants 

Molecular dimensions 

Secondary structure 
and persistent 
hydrogen bonds 

Tertiary contacts 
and native structure 

Fluorescence anisotropy 

Fluorescence energy transfer 

Small angle X-ray scattering 
Quasi-elastic light scattering 

Far-UV circular dichroism 

Pulse labelling NMR 

Pulse labelling mass 
spectrometry 

Biological activity 

Interrupted folding 

Near-UV circular dichroism 

Real-time NMR 

Protein engineering 

Tryptophan side chain mobility and 
overall molecular dimensions 
Scalar distance between tryptophan and 
a covalently attached fluorophore 
The average radius of gyration 
The average radius of gyration 

ms [16"] 

ms [17"] 

< 100 ms [20 o] 
1 s [22] 

ms [5] 

5-10 ms [24] 

5-10 ms [25"] 

ms-s [5] 

10 ms [30] 

ms [5] 

1 s [35"] 

t [32-] 

Backbone conformation averaged over 
sequence and population 
Sequence specific formation of stable 
amide and tryptophan hydrogen bonds 

The formation of persistent hydrogen 
bonds in discrete intermediates 

The formation of native tertiary structure 
at the active site 
The unfolding rate of discrete intermediates 
as a probe of their stability 
Formation of stable aromatic and 
disulphide bond tertiary contacts 
Formation of specific side chain tertiary 
contacts 
The energetic contributions of side chains 
to discrete intermediates 

*Many of the biophysical techniques developed to characterize native proteins at equilibrium have now been adapted to the structural and 
thermodynamic characterization of transient populations during folding. Here we summarize many of the biophysical techniques that have been 
used in recent years to characterize the folding of a variety of proteins. A single reference to each method is provided that either reflects a recent 
review of the subject or an illustrative application of the technique, tThe time resolution of protein-engineering refolding experiments is limited only 
by the time resolution of the probe used to monitor folding mutants. 

the translational mobility and thus overall dimensions of a 
macromolecule, and has been used to probe the formation 
of compact states during the refolding of lysozyme [22]. 
There  appears to be no fundamental reason why these 
techniques will not prove to be general methods for 
observing directly the dimensions of a polypeptide chain 
during protein folding. 

then, that the invention of extremely rapid methods 
for the initiation of refolding comes close on the heels 
of advances in high-speed CD [23]. Now that the 
application of high-intensity laser light sources to CD 
spectropolarimetry has produced sub-~ts time resolution, 
fundamental questions about the timing of the formation 
of secondary structure may soon be answered. 

M o n i t o r i n g  t h e  f o r m a t i o n  o f  s e c o n d a r y  
s t r u c t u r e  
Probes of the backbone conformation, such as far-UV 
CD and pulse-labelling hydrogen exchange, have provided 
a wealth of data on the kinetics of secondary-structure 
formation during folding (Table 1). The  recovery of 
far-UV CD ellipticity is widely considered a critical 
measure of the average secondary structure content in 
heterogeneous folding mixtures. For proteins, however, 
much of the formation of secondary structure occurs in 
a burst phase during the mixing deadtime and thus 
has not been amenable to direct study. It is fortunate, 

Although CD provides an estimate of average secondary 
structure content, it does not provide information on 
the specific residues involved or the distribution of 
conformations present. Pulse-labelling amide-exchange 
experiments can provide this complementary information 
by monitoring the formation of stable backbone hydrogen 
bonds [24]. Pulse labelling linked to NMR spectroscopy 
has been used for a number of years as a probe of 
the sequence-specific formation of persistent elements 
of secondary structure but, like optical methods, the 
technique cannot resolve individual components from 
heterogeneous mixtures. Advances in coupling pulse 
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labelling and mass spectrometry (MS) have furthered our 
understanding of the formation of secondary structure by 
allowing the observation of resolved molecular species. 
This has provided a means of characterizing the hydrogen- 
exchange properties of discrete species in heterogeneous 
populations, as observed, for example, during the refolding 
of lysozyme [25°]. MS, like optical methods, provides 
data averaged over the entire sequence of a molecule. 
Technical advances in MS, however, have proven the 
feasibility of identifying the sequences of protein cleavage 
products produced in the gas phase by collision-induced 
dissociation [26,27°]. It may thus soon prove possible 
to produce sequence-specific hydrogen-exchange data for 
discrete species in complex folding populations. 

Detecting tertiary contacts 
Because the formation of partially ordered states with 
regions of native-like structure is thought to be an essential 
step in protein folding, detecting native tertiary contacts 
in transient folding populations has been a major goal of 
folding research. Near-UV CD, which primarily monitors 
the aromatic side chains immobilized by asymmetric 
tertiary contacts, has proved an important probe of the 
recovery of native structure [5]. For many proteins, 
time-resolved assays of the recovery of biological activity 
(e.g. the binding of fluorescent substrates or inhibitors) 
can be used to monitor the recovery of a native active 
site [12°,28]. Interrupted folding experiments, in which 
transiently refolded mixtures undergo a second unfolding 
by the rapid addition of denaturant, have been used to 
detect the formation of material with native stability [29]. 
This method, which relies on the reasonable assumption 
that the unfolding rate of a given conformation reflects 
its thermodynamic stability, has recently been used to 
monitor the stability of an intermediate in the folding 
of barnase [30] and to support the existence of parallel 
pathways in the folding of lysozyme [31°]. It may provide 
a general probe of the formation of both native and 
near-native structures. 

Although probes of the formation of native protein are 
well established, only recently have techniques been de- 
veloped that can monitor the formation of specific tertiary 
contacts during folding. Protein engineering provides one 
method of assaying the contributions of specific side 
chains to the energetics of transient folding intermediates. 
The  contributions of these side chains (relative to their 
contribution to the stability of the native protein) have 
been interpreted as a measure of the 'nativeness' of their 
contacts in the intermediate. Major folding intermediates 
of barnase [32 °°] and phosphoglycetate kinase [33 °] have 
been characterized using this technique. Stopped-flow 
NMR has also been used to monitor the formation 
of specific tertiary interactions during folding [34,35"]. 
Though presently limited to a time resolution of - 1  s, 
the technique provides a nonperturbing method of 
detecting the formation of the highly shifted resonances 

characteristic of native proteins. This method shows 
much potential for providing information concerning the 
formation of specific native and native-like contacts during 
folding. 

Transition-state probes 
A complete description of the folding process requires 
knowledge of both the structure and energetics of the rate- 
determining conformation. While the ephemeral nature 
of transition states generally precludes direct structural 
studies, the transition state is the conformation of the 
rate-limiting step (or steps) and therefore the kinetics 
of folding can provide an indirect probe of its structure. 
The  effect of environmental factors and mutations on 
the kinetics of the recovery of native properties (such as 
fluorescence) have thus been used to provide a detailed 
picture of the conformation of this most fleetingly transient 
species in protein folding. 

Environmental factors that affect folding rates have 
provided valuable clues to the general nature of folding 
transition states. For example, studies of the temperature 
dependence of protein folding rates have been used to 
probe their thermodynamic properties [36°]. Other studies 
into the effects of pressure [37°], denaturants [38], ionic 
strength [39] and pH [40], have been used to define 
relative molar volumes and solvent-exposed surface areas 
of transition states, and to probe the contributions of 
ionizable groups to their energetics. From such studies, 
a general picture is emerging of a typical transition state 
as a collapsed but still relatively poorly packed set of 
conformations. 

Efforts to ascertain the high-resolution structure of a 
folding transition state have focused on protein engi- 
neering experiments designed to produce a map of the 
energetic contributions of specific side chains to the 
rate-limiting step. This has been carried out in some detail 
for barnase and chymotrypsin inhibitor 2 (C12) [32 °°] in 
studies that have provided insights into the structure and 
heterogeneity of the transition state [41], and suggest that 
small nuclei of native-like structure are involved in the 
rate-determining steps of the folding of at least some 
proteins. 

Conclusions 
As the number and quality of biophysical techniques 
with sufficient time resolution increases, so out detailed 
knowledge of the folding process improves. Issues such 
as cooperativity, collapse and the formation of secondary 
structure during refolding are becoming well described 
for a number of proteins. What is still lacking, however, 
is a means of generating a picture of the structure and 
distributions of transient folding populations with good 
spatial resolution. The  next challenge in protein folding 
lies in discovering how to produce such high-resolution 
data. Several potential approaches now appear feasible. 
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Because no single method can provide a complete 
picture of the distribution of structures in a transient 
population of intermediates (Fig. 1), it is clear that 
multiple complementary approaches must be combined to 
generate detailed structural models. For example, dynamic 
light-scattering and intrinsic fluorescence can be used 
to define the average dimensions and degree of core 
packing in a population, pulse-labelling amide exchange 
can provide information on the location and stability 
of secondary structure, and NMR and inhibitor binding 
can be used to define specific tertiary contacts. Such 
information can thus be brought together to develop a 
detailed picture of the key features the folding process 
[12",42",43"]. 

The  direct acquisition of high-resolution structural in- 
formation may also be possible through modifications of 
current biophysical methods. NMR, for example, was 
converted from a technique of low spatial resolution 
to one applicable to high spatial resolution by the 
introduction of two-dimensional spectroscopy. The  ap- 
plication of multi-dimensional NMR techniques to the 
study of highly transient structures may appear daunting, 
but the increased availability of specifically isotopically 
labeled proteins and high-field spectrometers has already 
made possible two-dimensional refolding experiments 
with a time resolution of a few minutes [44"] by 
repetitive accumulation of rapidly acquired spectra. Novel 
approaches may provide signifcant further reductions. 
For example, the refolding of a protein during the 
acquisition of two-dimensional data can result in changes 
in peak shape that can be deconvoluted to provide 
a wealth of information on the refolding kinetics of 
individual elements of the protein with time resolution 
on the order of seconds. Further potential exists for 
experiments in which nuclear Overhauser effect (NOE) 
crosspeaks generated in folding populations are detected 
in the spectrally well characterized native protein, possibly 
to provide a detailed picture of the tertiary contacts 
formed in transient folding intermediates (J Balbach et al., 
unpublished data). 

Theoretical methods can provide atomic-level models of 
the structure and distribution of protein folding interme- 
diates but they necessarily involve significant simplifying 
assumptions. The iterative coupling of simulation with 
experiment may provide the necessary constraints on 
these assumptions to produce accurate high-resolution 
models. Recent studies of the details of denatured protein 
conformations have provided an example of this type 
of complementary theoretical and experimental approach. 
Current understanding of the 'random coil' denatured 
state has recently been advanced by the use of exper- 
iments to verify the specific predictions produced from 
Monte Carlo simulations of the denatured state. Further 
refinements of these simulations based on discrepancies 
between predicted and observed NOEs and J-coupling 

constants [45 °'] has led to a deeper understanding of the 
conformational distributions within denatured states. 

A similar combined simulation and experimental ap- 
proach has been used for the interpretation of protein 
engineering investigations into the structure of the 
folding transition states of CI2 and barnase. Molecular 
dynamics simulations, here inspired and constrained by 
experimental investigations, proved vital for the formation 
of high-resolution models of these folding transition states 
[32"°,46"°,47"]. The  complementary aspects of theory 
and experiment in protein folding suggest that this 
promising trend will continue. In particular, it is to be 
hoped that, with the addition of experimentally derived 
constraints, lattice simulations [47°',48°,49 °] will lead to 
higher-resolution models of intermediate populations with 
significant predictive value. The  use of complementary 
biophysical approaches to obtain adequate information 
to constrain theoretical models holds great promise for 
providing a detailed description and understanding of the 
folding process. 
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